当前位置:技术分享 > 技术参考 > 正文

游戏行业玩家画像分析2016-03-04 16:02:57 | 编辑:hely | 查看: | 评论:0

玩家画像分析是编辑将用户画像分析引用到游戏行业提出的一个概念。将定量数据与定性分析的方法结合,对玩家群做出准确的判断,了解玩家的构成结构,玩家喜好及行为,从而找到自身产品的目标用户,对产品的市场细分及定位提供方法。

用户画像又称用户角色(Persona),作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。大家在实际操作的过程中往往会以最为浅显和贴近生活的话语将用户的属性、行为与期待联结起来。作为实际用户的虚拟代表,用户画像所形成的用户角色并不是脱离产品和市场之外所构建出来的,形成的用户角色需要有代表性能代表产品的主要受众和目标群体。(资料来自互联网)

玩家画像分析是编辑将用户画像分析引用到游戏行业提出的一个概念。将定量数据与定性分析的方法结合,对玩家群做出准确的判断,了解玩家的构成结构,玩家喜好及行为,从而找到自身产品的目标用户,对产品的市场细分及定位提供方法。进一步,对玩家数据分群,通过与玩家的定性访谈调研,细化玩家画像的颗粒度(画像应该细化到哪种程度),进而了解各群玩家的核心需求及潜在机会。

玩家画像分析的思路如下:

 

huaxiang

 

1. 玩家群体定量分类,从玩家数据中了解玩家结构,玩家结构包括玩家性别结构,玩家年龄结构,玩家收入结构,玩家使用的设备结构(IOS/android,设备品牌,设备硬件情况等)。

2. 玩家喜好&行为分析,从玩家数据中获得玩家结构与玩家喜好&行为间的关系,从产品的定位出发为产品寻找目标用户,找出与相关竞品间的差异,从而为市场细分及市场定位提供建议。

3. 核心玩家画像分析,第一步对后台数据进行提取,通过数据了解到玩家情况一些关键指标。在对玩家情况有一些初步把握后,获取玩家关键指标,进行数据清洗后,通过聚类分析对玩家进行分群。第二步,对各个群或者各个类型的玩家进行定性访谈,挖掘玩家生活情境与体验场景。围绕各类玩家的行为特征,了解玩家的核心需求情况,发现各类玩家的潜在机会,细化颗粒度(细化到每类玩家每一具体的体验情景),形成核心玩家画像。

 

huaxiang1

 

那么如何进行玩家画像分析,玩家群体定量分类,玩家喜好&行为分析和核心玩家画像分析,成为了大家需要探讨的问题。下一篇将讲述如何进行玩家群体定量分类

分享到:0收藏

上一篇:基于Spark的异构分布式深度学习平台 新浪微博的用户画像是怎样构建的?下一篇:

公众平台

搜索"raincent"或扫描下面的二维码

新浪微博 Tencent微博 订阅中心
?